Weak amenability of CAT(0)-cubical groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak amenability of Coxeter groups

Let (G,S) be a Coxeter group. We construct a continuation, to the open unit disc, of the unitary representations associated to the positive definite functions g 7→ rl(g). (Here 0 < r < 1, and l denotes the length function with respect to the generating set S.) The constructed representations are uniformly bounded and we prove that this implies the weak amenability of the group G. Résumé Soit (G...

متن کامل

Weak Amenability of Hyperbolic Groups

We prove that hyperbolic groups are weakly amenable. This partially extends the result of Cowling and Haagerup showing that lattices in simple Lie groups of real rank one are weakly amenable. We take a combinatorial approach in the spirit of Haagerup and prove that for the word length metric d on a hyperbolic group, the Schur multipliers associated with r have uniformly bounded norms for 0 < r ...

متن کامل

Weak Amenability and 2-weak Amenability of Beurling Algebras

Let Lω(G) be a Beurling algebra on a locally compact abelian group G. We look for general conditions on the weight which allows the vanishing of continuous derivations of Lω(G). This leads us to introducing vector-valued Beurling algebras and considering the translation of operators on them. This is then used to connect the augmentation ideal to the behavior of derivation space. We apply these ...

متن کامل

2n-Weak module amenability of semigroup algebras

‎Let $S$ be an inverse semigroup with the set of idempotents $E$‎. We prove that the semigroup algebra $ell^{1}(S)$ is always‎ ‎$2n$-weakly module amenable as an $ell^{1}(E)$-module‎, ‎for any‎ ‎$nin mathbb{N}$‎, ‎where $E$ acts on $S$ trivially from the left‎ ‎and by multiplication from the right‎. ‎Our proof is based on a common fixed point property for semigroups‎.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometriae Dedicata

سال: 2009

ISSN: 0046-5755,1572-9168

DOI: 10.1007/s10711-009-9408-8